If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30000=1500t-16t^2
We move all terms to the left:
30000-(1500t-16t^2)=0
We get rid of parentheses
16t^2-1500t+30000=0
a = 16; b = -1500; c = +30000;
Δ = b2-4ac
Δ = -15002-4·16·30000
Δ = 330000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{330000}=\sqrt{10000*33}=\sqrt{10000}*\sqrt{33}=100\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1500)-100\sqrt{33}}{2*16}=\frac{1500-100\sqrt{33}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1500)+100\sqrt{33}}{2*16}=\frac{1500+100\sqrt{33}}{32} $
| 1/3+x=31 | | 3x(x-5)=(3x+2)(x-1 | | -8+18r=17r | | 7(9)-7+y-6=90 | | 8x-77=3+38 | | 14x=540 | | 8+5u=33 | | z=2z-54 | | -0.4=g+-4.9 | | s+3+1/2s+20=6 | | -5x+9=5x+-1 | | (4x+30)+2x=180 | | Z=-2+3a | | 4u+14=-19u-9 | | 440=16t^2-2t+445 | | 17c-17=12c+2c+16 | | 7b−7=14 | | 3-2(w-3)=4-(w-5) | | 48+2x=280 | | 0.67x+5=3 | | 48=5x+33 | | 1/3x+3/8=3/4x+1/6 | | 4.70+0.25x=20.70 | | 6z-4z-9=11 | | 7x-7=3x-45 | | 3y-y+3=9 | | x-15+67=180 | | -4p+8=64 | | 1=n/17 | | 4(3a-2)+8(a+1)=100 | | -1=r/4+3 | | 5p-9=2p+`12 |